If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=-6x+54
We move all terms to the left:
x^2-(-6x+54)=0
We get rid of parentheses
x^2+6x-54=0
a = 1; b = 6; c = -54;
Δ = b2-4ac
Δ = 62-4·1·(-54)
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{7}}{2*1}=\frac{-6-6\sqrt{7}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{7}}{2*1}=\frac{-6+6\sqrt{7}}{2} $
| -9+a/6=13 | | 19/16x+7/8=9/8x | | 2/3(3x+5)=4x+3 | | 2(3.14)(9)+2(3.14)(3)(8)=x | | 2-x/2=x/5 | | 32=v/2+12 | | r+29=969 | | 4•(x-2)=24 | | 18=11+r/8 | | 854+y=44 | | 5w=990 | | z+104=86 | | 18=11r/8 | | b+41=84 | | 7p-6=2p+4 | | 5(x+2)=3(×+4) | | 3x+4.5=4.5x–18 | | h+382=391 | | 2t+4t-7=6 | | 18.5=44.1-2s | | (7x+2)+(17x-23)=180 | | 12x-3•=105• | | 9x+86=104 | | 24x+-36=15x+45+9x | | (11x-2)+(19x+3)+(9x+1)=180 | | 9x+5x=98 | | 1-2k=-9,k= | | x9+2/2=1/3 | | 4x+90=110 | | 14=6-x,x= | | 10^2+12^2=c^2 | | 8n+6=2n |